Abu Dhabi-UAE: There is always some baseline of movement in the universe, confounding efforts to probe subtle physical effects. Researchers have explored various techniques for quieting this movement. Previous research has mainly focused on controlling translational motion, which describes how things move forward, backward, up, and down.

Researchers at ETH Zurich and the Technology Innovation Institute Quantum Research Centre (QRC) are pioneering research to slow rotational motion to record low values as well. Rene Reimann, director of quantum sensing at the QRC, said, "At the moment, this is the smallest rotational motion of a nanometric levitated object that has ever been achieved."

Reducing both translational and rotational motion to the "ground state" will allow researchers to study physical phenomena that researchers have theorized about but never measured in practice. Fons van der Laan, Ph.D. student at ETH Zurich, said, "We are trying to find out what happens at the boundary between classical and quantum physics. This research will help us to learn where each theory collapses and what can arise in the space between them."

Small precise pushing

Like just a few other groups, the researchers have chosen to monitor and control the rotation of a levitated nano-dumbbell consisting of two tiny glass balls. This dumbbell configuration makes it easier to monitor and control the nano-object's rotation. At room temperature, a small structure like these nano-dumbbells wiggles back and forth with a rotational amplitude of about 6 degrees.

The researchers developed a contraption to push against the direction of wiggle gently and precisely with a laser. This is akin to gently pushing backwards against a child's movement in a swing to slow her down, only thousands of times faster and with minute force.

The contraption has reduced this wiggle to the lowest levels ever recorded. But the wiggle will need to be reduced another one-hundred times to study quantum phenomena like entanglement and superposition of larger-sized objects.

New opportunities

This research could also lead to highly sensitive torque sensors for measuring rotational motion. It could allow scientists to explore exotic quantum phenomenon like vacuum friction which causes things to slow down even when there is nothing else to dampen the movement. "This rotational vacuum friction has been predicted but not measured," Fons van der Laan said.

In the long run, this innovative nano-dumbbell approach could also lead to inertial sensors that are more accurate than optical gyroscopes. The existing state-of-the-art gyroscopes measure changes in light beams that travel around in a small ring. "But photon sensors have hit a wall and most likely will not get much better, so novel approaches are being pursued to increase sensitivity further," Rene Reimann said.

Finally, Fons van der Laan believes there are opportunities to collaborate with others in adjacent scientific domains to develop approaches the team at ETH and QRC has not considered.

These experimental achievements have been conducted as a team effort at ETH Zurich in the laboratory of Lukas Novotny, with Fons van der Laan as the main driving force.

This research has been published in Physical Review Letters:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.123605 

About Technology Innovation Institute (TII)

Technology Innovation Institute (TII) is the dedicated ‘applied research’ pillar of Advanced Technology Research Council (ATRC). TII is a pioneering global research and development centre that focuses on applied research and new-age technology capabilities. The Institute has seven initial dedicated research centres in quantum, autonomous robotics, cryptography, advanced materials, digital security, directed energy and secure systems. By working with exceptional talent, universities, research institutions and industry partners from all over the world, the Institute connects an intellectual community and contributes to building an R&D ecosystem reinforcing Abu Dhabi and the UAE’s status as a global hub for innovation.

For more information, visit www.tii.ae 

About Quantum Research Centre (QRC)

Quantum Research Centre – at Technology Innovation Institute (TII) – has been created to develop world-class quantum-theoretical and experimental research by building and operating the first quantum computer in the MENA region while advancing quantum communications and quantum sensors. The Centre aims to develop pioneering technologies backed by the expertise of an international team of leading researchers, dedicated to achieving a ‘Quantum Advantage’ which will transform the power and scope of computers.

For more information, visit https://quantum.tii.ae/ 

Connect with us on social media:
LinkedIn: https://www.linkedin.com/company/tiiuae/ 

Twitter: https://twitter.com/TIIuae 

Instagram: https://www.instagram.com/tiiuae/ 

Send us your press releases to pressrelease.zawya@refinitiv.com

© Press Release 2021

Disclaimer: The contents of this press release was provided from an external third party provider. This website is not responsible for, and does not control, such external content. This content is provided on an “as is” and “as available” basis and has not been edited in any way. Neither this website nor our affiliates guarantee the accuracy of or endorse the views or opinions expressed in this press release.

The press release is provided for informational purposes only. The content does not provide tax, legal or investment advice or opinion regarding the suitability, value or profitability of any particular security, portfolio or investment strategy. Neither this website nor our affiliates shall be liable for any errors or inaccuracies in the content, or for any actions taken by you in reliance thereon. You expressly agree that your use of the information within this article is at your sole risk.

To the fullest extent permitted by applicable law, this website, its parent company, its subsidiaries, its affiliates and the respective shareholders, directors, officers, employees, agents, advertisers, content providers and licensors will not be liable (jointly or severally) to you for any direct, indirect, consequential, special, incidental, punitive or exemplary damages, including without limitation, lost profits, lost savings and lost revenues, whether in negligence, tort, contract or any other theory of liability, even if the parties have been advised of the possibility or could have foreseen any such damages.